Education & Training
Capital Litigation Initiative: Crime Scene to Courtroom Forensics Training Webinars Capital Litigation Initiative: Crime Scene to Courtroom Forensics Training Live Seminars Forensic Science for Capital Litigators--Online Course--2014 |
Maria Corazon A. De Ungria, Ph.D. DNA Analysis Laboratory, Natural Sciences Research Institute University of the Philippines, Diliman, Q.C. 1101 Email: mcadu@uplink.com.ph Introduction Deoxyribonucleic acid or DNA testing is the most accurate form of testing to prove paternity or exclude paternity when the identity of the biological father is under dispute. DNA-based paternity testing has been requested to support claims for child support, inheritance, immigration and for peace in the family. More recently, DNA tests had been used to dispute false paternity claims that have already been decided in favor of the childs mother prior to the submission of DNA evidence in US courts.1 Traditionally, paternity is determined using one or a combination of any of four procedures namely: 1) a prima facie case where the woman testifies that she had sexual relations with the man; 2) affirmative defenses where the putative father claims he is impotent or that another man had relations with the childs mother; 3) a presumption of legitimacy if the child was born within a valid marriage; and 4) physical resemblance between an alleged father and the supposed child.2. In addition, either party may present results of serological tests, e.g. ABO and MN blood typing to support their respective claims. In Raymund Pe Lim vs Joanna Rose Pe Lim et al3, the Supreme Court recognized the novelty of DNA technology at the time. It stated:
Admissibility of DNA Evidence in Philippine Courts The Supreme Court first recognized to the existence and availability of DNA technology in resolving disputed parentage cases in Tijing v Diamante et al5. In this case, the couple Tijing and a Mrs. Angelita Diamante, simultaneously claimed to be the parents of a child. Based on other evidence already presented such as information on the childs birth and the apparent inability of the respondent Diamante to bear a child, the Supreme Court affirmed the decision of the Regional Trial Court and reversed the ruling of the Court of Appeals by granting custody of the child to Edgardo A. Tijing and Bienvenida R. Tijing. In addition, the Supreme Court included the option of DNA testing if the respondent Diamante chooses to further her appeal for the custody of the child. In the decision, it stated:
In Daubert v Merrell Dow, it was ruled that pertinent evidence based on scientifically valid principles could be used as long as it was relevant and reliable. Judges, under Daubert, were allowed greater discretion over which testimony they would allow at trial, including the introduction of new kinds of scientific techniques. DNA typing is one such novel procedure. Under Philippine law, evidence is relevant when it relates directly to a fact in issue as to induce belief in its existence or non-existence. Applying the Daubert test to the case at bar, the DNA evidence obtained through PCR testing and utilizing STR analysis, and which was appreciated by the court a quo is relevant and reliable since it is reasonably based on scientifically valid principles of human genetics and molecular biology.
WHEREFORE, premises considered, this court on reasonable doubt, acquits, Victoriano Paras, on the five information(s) of rape filed against him. Cost de oficio. In People v De Villa11, the accused was convicted of raping his 13-year old niece by affinity which led to the birth of a child. Upon review, the Supreme Court changed the sentence to reclusion perpetua because of the failure to include relationship in the information and ordered the accused-appellant De Villa to pay for civil indemnity, moral damages, cost of the suits and the support of the child12. In 2003, the family of the accused-appellant managed to get biological samples from the victims child and De Villa and submitted these samples for DNA-based paternity testing. Results of the DNA tests excluded the accused from being the biological father of the child. The counsel of the accused then filed a motion for habeas corpus and petition to re-open the case for the presentation of new evidence with the Supreme Court. In reply, the Supreme Court issued a Resolution advising defense counsel to write a Memorandum on the case. During the preparation of the said Memorandum, the defense counsel asked Mr. Christopher Asplen, former Executive Director of the US National Commission on DNA Evidence, to write a commentary that detailed developments in the use of post-conviction DNA testing in the US, UK and elsewhere. In addition, Mr. Asplen, who has extensive experience in Post-Conviction DNA tests in the US, reviewed the entire Memorandum, particularly on the issue of whether or not the DNA paternity test in petitioners case would be exonerative, prior to its submission to the Supreme Court. It stated13:
Second, in its reference to a case illustrating the benign effect of late reporting of an incident, the trial court states that, (i)n at least one case, we observed that if the complainant did not become pregnant she probably would never have revealed that she had been raped by her uncle. Third, the court ordered petitioner to support the child. These three considerations prove the materiality of the paternity of the victims child. If petitioner De Villas paternity of Leahlyn Mendoza can be categorically and scientifically disputed, this Courts judgment in People v De Villa finding petitioner De Villa guilty of rape must be reviewed and reconsidered. ...The nature of scientific evidence is such that it cannot be considered inferior to the testimony. If shown to be reliable and admissible, scientific evidence which, by nature is neutral and objective as opposed to testimony, which by nature, would contain inherent biases- must be considered to have greater persuasive weight than testimony.
It must be stressed that the issue if Leahlyn Mendozas paternity is not central to the issue of petitioners guilt or innocence. The rape of the victim Aileen Mendoza is an entirely different question, separate and distinct from the question of the father of her child. In People v Paras and People v De Villa, the DNA evidence provided, conclusively excluded the accused from being the biological father of the child (paternity exclusion). The alternate scenario is when an alleged father is not excluded (paternity inclusion) and the weight of matching DNA evidence needs to be evaluated using the appropriate statistical analysis and population database16. In Herrera v Alba et al.17 the Supreme Court provided a practical formula to resolve issues related to judicial interpretation of matching DNA evidence in disputed parentage cases. The decision stated:
DNA analysis that excludes the putative father from paternity should be conclusive proof of non-paternity. If the value of W is less than 99.9%, the results of the DNA analysis should be considered as corroborative evidence. If the value of W is 99.9% or higher, then there is refutable presumption of paternity. This refutable presumption of paternity should be subjected to the Vallejo standards.18 DNA typing is based on the uniqueness of the overall genetic make-up of an individual, except identical twins19. Basic to the understanding of the complexity of DNA typing is the concept of the cell. A cell is the building unit of an organism made up of its component parts, which includes the nucleus that functions as the cells command center, and several hundreds and thousands of mitochondria that functions as the powerhouse of the cell. DNA resides in both the nucleus (nuclear DNA) and the mitochondria (mitochondrial DNA). The nucleus houses the DNA that codes for genetic information responsible for most cellular processes. Several DNA molecules comprise genes which in turn are located in minute bodies called chromosomes. In humans, there are 23 pairs of chromosomes within a cell thus making up a total of 46 chromosomes (22 pairs of autosomal chromosomes and 1 pair of sex chromosomes). Sex chromosomes define the sex of a person: XX for females and XY for males. Some chromosomal regions contain repeating units of the same type of DNA molecule. One group of these markers is known as Short Tandem Repeat or STR markers. The number of repeating units in individuals may vary and may be used to identify the source of a biological sample. STR markers included in the tests are selected based on the following criteria: 1) DNA markers are highly polymorphic in a given population; 2) reactions are robust to allow DNA typing of degraded samples; and 3) molecular procedures involved have been validated and optimized20. DNA typing for paternity is done by first carefully extracting the DNA from the biological samples submitted by the alleged father, child with mother (paternity trio) or in the absence of the mothers sample (paternity duo). The DNA pattern from the child is analyzed given those of his mother (if available) and alleged father. The DNA type contributed by the childs real biological father should be observed in the alleged father. Then, the probability that the alleged father is the father of the child is calculated as a ratio between that of the alleged father and any random male in the population. Notably, testing without the mothers DNA profile (motherless case) was found to be less informative and five times more prone to paternity inclusions when testing seven STR markers than when the maternal DNA profile is made available21. The current DNA Laboratory set-up at UP-NSRI uses 13-20 STR analysis which includes the FBI defined Combined DNA Identification System (CODIS) markers for DNA typing. At the UP-NSRI DNA Laboratory, the lack of information brought about the absence of the mothers DNA profile in motherless cases is minimized by increasing the number of DNA markers of the alleged father and child that are tested to 20 markers compared to the standard 16 markers for paternity trio cases. A mismatch suggests that the alleged father is excluded as the biological father of the child. In some cases, mutation results in a false mismatch between real fathers and their children22 hence the standards accepted in most laboratories is to require a minimum of two mismatches prior to excluding a man from potentially fathering the child. On the other hand, a match between the DNA profile of the alleged father and the child does not necessarily establish paternity, but may be due to chance matches between totally unrelated individuals. To estimate the likelihood of paternity over nonpaternity, a Probability of Paternity (W) is calculated based on the DNA profile of the father, mother and child. The Supreme Court had prescribed the minimum value of 99.9% for W 23. Other types of DNA tests In some situation, biological sample from the alleged parent may not be available, e.g. the alleged parent is deceased or could not be located. Hence, alternative approaches must be used to resolve civil issues. One such approach is the use of paternally inherited Y chromosomal DNA markers to trace paternal lineages using a Y-chromosome database24. Since this marker is male-specific, an individuals Y chromosome that he inherited from his father, is passed on to his son and to his sons son, as well as all the sons of his brother25. Note that by itself the use of Y-chromosomal STR typing is less discriminating than autosomal STR typing. However the combined use of both Y and autosomal markers provide a very powerful tool for male identification. This strategy has been used in the identification of exhumed remains of the child victims of the Paco fire tragedy of 1998 using reference samples provided by their parents26. In parallel, an individuals mitochondrial DNA originated entirely from his mother. Hence mitochondrial DNA technology is being used and further developed to assist in more complex cases of identification, e.g. victims of mass disaster tragedies, when no ante-mortem sample is available and reference samples for comparisons are provided by the victims mother or other maternal relatives. Paternity testing in the Philippines Short Tandem Repeat (STR) technology for performing DNA analysis for forensic purposes is currently being used by four laboratories here in the Philippines namely those of the National Bureau of Investigations (NBI), the Philippine National Police (PNP), St. Lukes Medical Center (SLMC) and the University of the Philippine Natural Sciences Research Institute (UP-NSRI) for criminal and civil cases (www.dnaforensic.org). Of the four laboratories, the NBI, PNP and UP-NSRI accept civil as well as criminal cases, albeit the UP-NSRI laboratory is requested to conduct more DNA tests on civil disputes rather than criminal cases. The SLMC laboratory only accepts tests to resolve civil issues. In addition, the establishment of a Philippine population database is available for statistical evaluation of DNA evidence27. Unfortunately, none of the four Philippine laboratories is accredited by any local or international agency tasked to evaluate whether existing procedures satisfy the Vallejo admissibility standards set down by the Supreme Court28. The UP-NSRI DNA Analysis Laboratory, with funding from the UP Center for Integrative Studies, is currently working on formulating a national strategy for the local accreditation of forensic DNA laboratories in the Philippines to address this issue. Meanwhile in the absence of a local accrediting agency to assist in the evaluation of laboratory standards used to generate DNA results, the gate-keeping task of the Court to admit or not to admit DNA evidence based on its relevance to a specific case, also includes the responsibility to scrutinize the application of the scientific method to ensure an error-free analysis. Conclusion With the rapid development of DNA-based paternity testing, it is inevitable that DNA evidence will be used more and more to support or argue against paternity in Courts of Law. Initially, strength of paternity tests lies primarily in its power to exclude the wrong man. However, the rapid development of STR typing technology has also increased its power to identify real fathers thus providing objective evidence for a fair and swift resolution of civil and criminal cases. Acknowledgments The author would like to acknowledge Attorney Jose M. Jose for critically reviewing the manuscript; and Attorney Jose Maria A. Ochave for interesting discussions on various topics related to the paper. The author is also grateful to Ms. Miriam M. Dalet and Ms. Minerva S. Sagum for technical assistance during the preparation of the manuscript. Up 1www.ejfi.org
|